Extremes of the stochastic heat equation with additive Lévy noise

نویسندگان

چکیده

We analyze the spatial asymptotic properties of solution to stochastic heat equation driven by an additive Lévy space-time white noise. For fixed time t>0 and space x∈Rd we determine exact tail behavior both for light-tailed heavy-tailed jump measures. Based on these asymptotics any almost-sure growth rate as |x|→∞.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear stochastic equations with multiplicative Lévy noise.

The Langevin equation with a multiplicative Lévy white noise is solved. The noise amplitude and the drift coefficient have a power-law form. A validity of ordinary rules of the calculus for the Stratonovich interpretation is discussed. The solution has the algebraic asymptotic form and the variance may assume a finite value for the case of the Stratonovich interpretation. The problem of escapin...

متن کامل

Rate of Weak Convergence of the Finite Element Method for the Stochastic Heat Equation with Additive Noise

The stochastic heat equation driven by additive noise is discretized in the spatial variables by a standard finite element method. The weak convergence of the approximate solution is investigated and the rate of weak convergence is found to be twice that of strong convergence.

متن کامل

Stochastic Heat Equation with Multiplicative Fractional-Colored Noise

We consider the stochastic heat equation with multiplicative noise ut = 1 2 ∆u + uẆ in R+ × R , whose solution is interpreted in the mild sense. The noise Ẇ is fractional in time (with Hurst index H ≥ 1/2), and colored in space (with spatial covariance kernel f). When H > 1/2, the equation generalizes the Itô-sense equation for H = 1/2. We prove that if f is the Riesz kernel of order α, or the ...

متن کامل

Stochastic Heat Equation with Infinite Dimensional Fractional Noise: L2-theory

In this article we consider the stochastic heat equation in [0, T ]× Rd, driven by a sequence (β)k of i.i.d. fractional Brownian motions of index H > 1/2 and random multiplication functions (g)k. The stochastic integrals are of Hitsuda-Skorohod type and the solution is interpreted in the weak sense. Using Malliavin calculus techniques, we prove the existence and uniqueness of the solution in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2022

ISSN: ['1083-6489']

DOI: https://doi.org/10.1214/22-ejp855